

Structure and function description, section

The 4/2- and 4/3-way proportional directional valves are designed as direct operated units for subplate mounting. They are operated via proportional solenoids with central thread and removeable coil. The control of the solenoids is optionally by means of external control electronics (model WRA) or integral valve electronics (model WRAE).

Structure:

The valve mainly consists of:

- Housing (1) with mounting surface
- Control spool (2) with compression springs (3 and 4)
- Solenoids (5 and 6) with central thread
- Optionally integrated valve electronics (7)

Function description:

- With solenoids (5 and 6) de-energized, the control spool (2) is held in the center position by compression springs (3 and 4)
- Direct operation of control spool (2) by energizing a proportional solenoid
e.g. control solenoid "b" (6)
\rightarrow Moving of control spool (2) to the left proportionally to electrical input signal
\rightarrow Flow from P to A and B to T via
orifice-like cross sections with progressive flow characteristics
- De-energizing of solenoid (6) \rightarrow control spool (2) is returned to the center position by compression spring (3)

Model 4WRA10...-2X/...

Model 4WRAE10...-2X/...

Valve with 2 spool positions:

(Model 4WRA...A... or 4WRA..B...)
The function of this valve structure is principally the same as with the valve with 3 spool positions. However, the 2 -spool position valves are only equipped with solenoid "a" (5) or solenoid "b" (6). Instead of the 2nd proportional solenoid there is an end cap (8).

Note:

Emptying of the tank line is to be avoided. With such conditions, check valve (≥ 29 PSI (2 bar)) can be installed in the tank line.

Ordering code

Technical data (For application outside these parameters please consult us!)

General		
Installation position		optional, preferrably horizontal
Ambient temperature range	WRA... ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	-4 to $+158(-20$ to +70$)$
	WRAE... ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	-4 to +140 (-20 to +60$)$
Weight	WRA... lbs (kg)	14.6 (6.6)
	WRAE... lbs (kg)	15.0 (6.8)
Hydraulic (measured at $v=150 \mathrm{SUS}(32 \mathrm{~mm} / \mathrm{s})$ and $t=104{ }^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$)		
Operating pressure	Port A, B, P PSI (bar)	up to 4600 (315)
	Port T PSI (bar)	up to 3046 (210)
Nominal flow $q_{V N}$ bei $\Delta p=145$ PSI (10 bar) GPM (L/min)		$\begin{aligned} & \hline 7.93(30) \\ & 15.9(60) \\ & \hline \end{aligned}$
Flow (max. permissible) GPM (L/min)		19.8 (75) [37 (140) with double flow]
Pressure fluid		Mineral oil (HL, HLP) to DIN 51524 Phosphate ester (HFD-R)
Fluid cleanliness		Maximum permissible degree of contamination of pressure fluid to NAS 1638 Class 7 to 9 . We therefore recommend a filter with a minimum retention rate of $\beta_{10} \geq 75$.
Pressure fluid temperature range	WRA... ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	-4 to $+158(-20$ to +70$)$
	WRAE... ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	-4 to $+158(-20$ to +70$)$
Viscosity range SUS (mm²/s)		78 to 1760 (15 to 380)
Hysteresis \%		≤ 5
Reversal span \%		≤ 1
Response sensitivity \%		≤ 0.5
Frequency response (-90°, signal $50 \% \pm 40 \%$) Hz		10
Electrical		
Insulation to DIN 40050		exceeds NEMA Class B (IP 65)
Voltage model		Direct voltage
Signal model		analog
Command signal	Voltage input V	± 10
	Current input mA	4 to 20
Input impedance	Voltage input $\quad \Omega$	20K or higher
	Current input $\quad \Omega$	100
Max. current per solenoid A		2.5
Solenoid coil resistance	Cold value at $68{ }^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right) \quad \Omega$	2
	Max. warm value $\quad \Omega$	3
Duty cycle \%		100
Coil temperature $\quad{ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$		up to 302 (150)
Electrical connection	WRA...	Plug-in connection to DIN 43 650/2-pin + PE/Pg11
	WRAE...	Plug-in connection to DIN 43 563/6-pin + PE/Pg11
Supply voltage	Nominal voltage VDC	24
	Lower limiting value WRA... V Lower limiting value WRAE... V	$\begin{aligned} & 22 \\ & 19 \end{aligned}$
	Upper limiting value V	35
Current consumption of amplifier	$I_{\text {max }}$ A	1.8
	Impulse current A	4
Control electronics	WRA...	Amplifier model VT-VSPA2-2-1X/... in Euro-card format (separate order), see page 10 or data sheet RA 30112
	WRAE...	Integrated into valve, see page 5

Electrical connection with model WRA

Integral valve electronics with model WRAE

Pin allocation unit plug

Integral electronics (see below)

	Pin	Signal
Supply voltage	A	24 VDC (19 to 35 VDC$)$
	B	GND (0 V)
Differential	C	do not connect (0 V)
input	E	Command value ($\pm 10 \mathrm{~V} / 4$ to 20 mA)
	F	do not connect
PE	\perp	Protective ground

Command value: Reference potential at E and positive command value (or 12 to 20 mA) at D causes flow from P to A and B to T.
Reference potential at E and negative command value (or 4 to 12 mA) at D causes flow from P to B and A to T.
With valve with 1 solenoid on side A (spool variations EA and WA) reference potential at E and positive command value at D cause flow from P to B and A to T.

Conn. cable: Recommendation: - up to $80 \mathrm{ft}(25 \mathrm{~m})$ cable length stranded 18 AWG (LiYCY $5 \times 0.75 \mathrm{~mm}^{2}$) - up to $160 \mathrm{ft}(50 \mathrm{~m})$ cable length stranded 16 AWG (LiYCY $5 \times 1.0 \mathrm{~mm}^{2}$)

External diameters 0.26 to 0.44 inches (6.5 to 11.2 mm)
Only connect shield to earth ground PE on supply side.
Block circuit diagram/terminal connection of integral valve electronics

Transition functions with electrical step input signals

Operating curves (measured at $v=150 \operatorname{SUS}\left(32 \mathrm{~mm}^{2} / \mathrm{s}\right)$ and $t=104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$)

Double flow with 7.93 GPM ($30 \mathrm{~L} / \mathrm{min}$)
nominal flow spool

$\Delta p=$ Valve pressure difference to DIN 24311
(Input pressure minus load pressure and minus return pressure)

Double flow with 15.9 GPM ($60 \mathrm{~L} / \mathrm{min}$) nominal flow spool

$\Delta p=$ Valve pressure difference to DIN 24311 (input pressure minus load pressure and minus return pressure)

Double flow with 7.93 GPM (30 L/min)
nominal flow spool

Double flow with 15.9 GPM ($60 \mathrm{~L} / \mathrm{min}$) nominal flow spool

1 Command value = 40 \%
2 Command value = 50%
3 Command value $=60 \%$
4 Command value = 70 \%
5 Command value = 80%
6 Command value = 90%
7 Command value = 100%

Double-flow example

Unit dimensions model WRA10: dimensions in inches (millimeters)

1 Valve housing
2 Proportional solenoid "a"
3 Proportional solenoid "b"
4.1 Z4-plug "A", color grey; order no. RR00 008908
4.2 Z4-plug "B", color black; order no. RR00 008909

5 Nameplate
6 Valve bleed bolt
Note: Valves are bled before delivery.
7 Emergency operation N9
8 R-ring ($13.0 \times 1.6 \times 2.0 \mathrm{~mm}$); Ports A, B, P, T
9 Plug bolt for valve with one solenoid (2 switching positions, models EA, WA, EB or WB)
10 Space requirement for removal of plugs
11 Machined valve mounting surface,
Position of ports to DIN 24340 Form A, ISO 4401 and CETOP-RP 121 H , NFPA/ANSI D 05

Subplates to data sheet RA 45054 and valve mounting bolts must be ordered separately.

Subplates: G66/05 (3/8" NPT)
G67/05 (1/2" NPT)
G534/05 (3/4" NPT)
G66/12 (SAE-6; 9/16-18)
G67/12 (SAE-8; 3/4-16)
G534/12 (SAE-12; 1-1/16-12)
Valve mounting bolts: 4) $1 / 4-20$ UNC $\times 1-1 / 2^{\prime \prime}(\mathrm{M} 6 \times 40)$ DIN 912-10.9, grade 8 or better Torque $M_{\mathrm{A}}=11.4 \mathrm{lb}-\mathrm{ft}(15.5 \mathrm{Nm})$

Unit dimensions model WRAE10: dimensions in inches (millimeters)

Required surface finish of mating piece

1 Valve housing
2 Proportional solenoid "a"
3 Proportional solenoid "b"
4 Z31-plug, 6pin + PE; order no. RR00 021267
5 Nameplate
6 Valve bleed bolt
Note: Valves are bled before delivery.
7 Emergency operation N9
8 R-ring ($13.0 \times 1.6 \times 2.0 \mathrm{~mm}$); Ports A, B, P, T
9 Plug bolt for valve with one solenoid (2 switching positions, models EA, WA, EB or WB)
10 Space requirement for removal of plugs
11 Machined valve mounting surface,
Position of ports to DIN 24340 Form A,
ISO 4401 and CETOP-RP 121 H ,
NFPA/ANSI D 05

Subplates to data sheet RA 45054 and valve mounting bolts must be ordered separately.

Subplates: G66/05 (3/8" NPT)
G67/05 (1/2" NPT)
G534/05 (3/4" NPT)
G66/12 (SAE-6; 9/16-18)
G67/12 (SAE-8; 3/4-16)
G534/12 (SAE-12; 1-1/16-12)
Valve mounting bolts: 4) 1/4-20 UNC $\times 1-1 / 2^{\prime \prime}(\mathrm{M} 6 \times 40)$ DIN 912-10.9, grade 8 or better Torque $M_{\mathrm{A}}=11.4 \mathrm{lb}-\mathrm{ft}(15.5 \mathrm{Nm})$

Control electronics for model 4WRA10.-2X/...: amplifier VT-VSPA2-2 (separate order)

Technical data

Ordering code

VT-VSPA2 - 2	*	
Amplifier for proportional directional valve 4WRA10-2X = 2		Further details in clear text
Series 10 to 19 (10 to 19: technical data and terminal connection unchanged)	$\begin{aligned} & \mathrm{T} 1= \\ & \mathrm{T} 5= \end{aligned}$	1 ramp time 5 ramp times

Notes

